247 research outputs found

    Chromatographic, Spectroscopic and Mass Spectrometric Approaches for Exploring the Habitability of Mars in 2012 and Beyond with the Curiosity Rover

    Get PDF
    The Sample Analysis at Mars (SAM) suite of instruments on the Curiosity Rover of Mars Science Laboratory Mission is designed to provide chemical and isotopic analysis of organic and inorganic volatiles for both atmospheric and solid samples. The goals of the science investigation enabled by the gas chromatograph mass spectrometer and tunable laser spectrometer instruments of SAM are to work together with the other MSL investigations is to quantitatively assess habitability through a series of chemical and geological measurements. We describe the multi-column gas chromatograph system employed on SAM and the approach to extraction and analysis of organic compounds that might be preserved in ancient martian rocks

    Neutral Mass Spectrometry for Venus Atmosphere and Surface

    Get PDF
    The assignment is to make precise (better than 1 %) measurements of isotope ratios and accurate (5-10%) measurements of abundances of noble gas and to obtain vertical profiles of trace chemically active gases from above the clouds all the way down to the surface. Science measurement objectives are as follows: 1) Determine the composition of Venus atmosphere, including trace gas species and light stable isotopes; 2) Accurately measure noble-gas isotopic abundance in the atmosphere; 3) Provide descent, surface, and ascent meteorological data; 4) Measure zonal cloud-level winds over several Earth days; 5) Obtain near-IR descent images of the surface from 10-km altitude to the surface; 6) Accurately measure elemental abundances & mineralogy of a core from the surface; and 7) Evaluate the texture of surface materials to constrain weathering environment

    The History of Planetary Exploration Using Mass Spectrometers

    Get PDF
    At the Planetary Probe Workshop Dr. Paul Mahaffy will give a tutorial on the history of planetary exploration using mass spectrometers. He will give an introduction to the problems and solutions that arise in making in situ measurements at planetary targets using this instrument class

    In Situ Strategy of the 2011 Mars Science Laboratory to Investigate the Habitability of Ancient Mars

    Get PDF
    The ten science investigations of the 2011 Mars Science Laboratory (MSL) Rover named "Curiosity" seek to provide a quantitative assessment of habitability through chemical and geological measurements from a highly capable robotic' platform. This mission seeks to understand if the conditions for life on ancient Mars are preserved in the near-surface geochemical record. These substantial payload resources enabled by MSL's new entry descent and landing (EDL) system have allowed the inclusion of instrument types nevv to the Mars surface including those that can accept delivered sample from rocks and soils and perform a wide range of chemical, isotopic, and mineralogical analyses. The Chemistry and Mineralogy (CheMin) experiment that is located in the interior of the rover is a powder x-ray Diffraction (XRD) and X-ray Fluorescence (XRF) instrument that provides elemental and mineralogical information. The Sample Analysis at Mars (SAM) suite of instruments complements this experiment by analyzing the volatile component of identically processed samples and by analyzing atmospheric composition. Other MSL payload tools such as the Mast Camera (Mastcam) and the Chemistry & Camera (ChemCam) instruments are utilized to identify targets for interrogation first by the arm tools and subsequent ingestion into SAM and CheMin using the Sample Acquisition, Processing, and Handling (SA/SPaH) subsystem. The arm tools include the Mars Hand Lens Imager (MAHLI) and the Chemistry and Alpha Particle X-ray Spectrometer (APXX). The Dynamic Albedo of Neutrons (DAN) instrument provides subsurface identification of hydrogen such as that contained in hydrated mineral

    Calibration and Sequence Development Status for the Sample Analysis at Mars Investigation on the Mars Science Laboratory

    Get PDF
    The measurement goals of the Sample Analysis at Mars (SAM) instrument suite on the "Curiosity" Rover of the Mars Science Laboratory (MSL) include chemical and isotopic analysis of organic and inorganic volatiles for both atmospheric and solid samples [1,2]. SAM directly supports the ambitious goals of the MSL mission to provide a quantitative assessment of habitability and preservation in Gale crater by means of a range of chemical and geological measurements [3]. The SAM FM combined calibration and environmental testing took place primarily in 2010 with a limited set of tests implemented after integration into the rover in January 2011. The scope of SAM FM testing was limited both to preserve SAM consumables such as life time of its electromechanical elements and to minimize the level of terrestrial contamination in the SAM instrument. A more comprehensive calibration of a SAM-like suite of instruments will be implemented in 2012 with calibration runs planned for the SAM testbed. The SAM Testbed is nearly identical to the SAM FM and operates in a ambient pressure chamber. The SAM Instrument Suite: SAM's instruments are a Quadrupole Mass Spectrometer (QMS), a 6-column Gas Chromatograph (GC), and a 2-channel Tunable Laser Spectrometer (TLS). Gas Chromatography Mass Spectrometry is designed for identification of even trace organic compounds. The TLS [5] secures the C, H, and O isotopic composition in carbon dioxide, water, and methane. Sieved materials are delivered from the MSL sample acquisition and processing system to one of68 cups of the Sample Manipulation System (SMS). 59 of these cups are fabricated from inert quartz. After sample delivery, a cup is inserted into one of 2 ovens for evolved gas analysis (EGA ambient to >9500C) by the QMS and TLS. A portion of the gas released can be trapped and subsequently analyzed by GCMS. Nine sealed cups contain liquid solvents and chemical derivatization or thermochemolysis agents to extract and transform polar molecules such as amino acids, nucleobases, and carboxylic acids into compounds that are sufficiently volatile to transmit through the GC columns. The remaining 6 cups contain calibrants. SAM FM Calibration Overview: The SAM FM calibration in the Mars chamber employed a variety of pure gases, gas mixtures, and solid materials. Isotope calibration runs for the TLS utilized 13C enriched C02 standards and 0 enriched CH4. A variety of fluorocarbon compounds that spanned the entire mass range of the QMS as well as C3-C6 hydrocarbons were utilized for calibration of the GCMS. Solid samples consisting of a mixture of calcite, melanterite, and inert silica glass either doped or not with fluorocarbons were introduced into the SAM FM cups through the SAM inlet funnel/tube system

    High-altitude gravity waves in the Martian thermosphere observed by MAVEN/NGIMS and modeled by a gravity wave scheme

    Full text link
    First high-altitude observations of gravity wave (GW)-induced CO2_2 density perturbations in the Martian thermosphere retrieved from NASA's NGIMS instrument on board the MAVEN satellite are presented and interpreted using the extended GW parameterization of Yi\u{g}it et al. [2008] and the Mars Climate Database as an input. Observed relative density perturbations between 180-220 km of 20-40 % demonstrate appreciable local time, latitude, and altitude variations. Modeling for the spatiotemporal conditions of the MAVEN observations suggests that GWs can directly propagate from the lower atmosphere to the thermosphere, produce appreciable dynamical effects, and likely contribute to the observed fluctuations. Modeled effects are somewhat smaller than the observed but their highly variable nature is in qualitative agreement with observations. Possible reasons for discrepancies between modeling and measurements are discussed.Comment: Accepted for publication in Geophysical Research Letters (GRL). Special section: First Results from the MAVEN Mission to Mar

    Environmental Signatures for Habitability: What to Measure and How to Rank the Habitability Potential of Mars

    Get PDF
    The environmental signatures for habitability are not necessarily biosignatures, even though on Earth, they are definitive proof of habitability. It is the constant overprint of the chemical signatures of life that makes it difficult to recognize the chemical and physical properties of a potentially habitable environment as distinct from an inhabited one. Mars Science Laboratory (MSL) will soon embark on a mission to Mars to assess its past or present habitability, so it is useful to examine how we measure habitability on Earth and prepare for how that approach may differ for Mars. This exercise includes: (a) articulation of fundamental assumptions about habitability, (b) an inventory of factors that affect habitability, (c) development of metrics, measurement approach and implementation, and (d) a new classification scheme for planetary habitability that goes beyond the binary "yes" or "no." There may be dozens of factors that affect habitability and they can be weighted as a function of specific environment. However a robotic, in situ investigation even on Earth has constraints that prevent the measurement of every environmental factor, so metrics must be reduced to the most relevant subset, given available time, cost, technical feasibility and scientific importance. Many of the factors could be measured with a combination of orbital data and the MSL payload. We propose that, at a minimum, a designation of high habitability potential requires the following conditions be met: (a) thermally stable with respect to extremes and frequency of fluctuation, (b) has more than one energy source, (c) sufficient chemical diversity to make compounds with covalent and hydrogen bonding, (d) can moderate ionizing radiation enough to allow a stable or evolving pool of organic molecules, (e) must have water or other high quality polar solvent, (f) must be able to renew chemical resources (e.g., plate tectonics, volcanism or something else we haven't envisioned). A measurement approach we have taken to measure habitability on Earth is : 1. Study remote sensing data, maps, etc. 2. Decide how big an area to measure. 3. Determine the spatial sampling rate. 4. Determine the temporal sampling rate. 5. Determine the order of measurements 6. Decide where to begin measurements 7. Select locations at field site and proceed While science drives each of the steps, there are additional constraints, e.g., technical, time, cost, safety (risk). This approach is also executable on Mars. Measurement of past habitability is more challenging both for Earth and Mars where access to the past means subsurface access and confrontation with unknowns about preservation of the martian past. Some environments preserve evidence of past habitability better than others, and this is where selection of the landing site to maximize the preservation potential of habitability indicators will be key. Mars presents an opportunity to discover transitional states between habitable or not, and we offer a ranking scale for planetary habitability with Mars as the second test subject: CLASS ONE Uninhabitable and likely has never been so CLASS TWO Has a high potential but no confirmed observation of life (as defined above) CLASS THREE Inhabited (we find life) 3-A Globally inhabited 3-B Primitive life; early in its evolution, but not yet globally established 3-C Exists only in refugia -- planet heading toward class four CLASS FOUR Post-habitable (there once was life, but now it's gone) MSL provides an opportunity to carefully investigate the habitability of at least one site on Mars and it will reveal much about the possible states of planetary habitabilit

    Perchlorate formation on Mars through surface radiolysis‐initiated atmospheric chemistry: A potential mechanism

    Full text link
    Recent observations of the Martian surface by the Phoenix lander and the Sample Analysis at Mars indicate the presence of perchlorate (ClO4–). The abundance and isotopic composition of these perchlorates suggest that the mechanisms responsible for their formation in the Martian environment may be unique in our solar system. With this in mind, we propose a potential mechanism for the production of Martian perchlorate: the radiolysis of the Martian surface by galactic cosmic rays, followed by the sublimation of chlorine oxides into the atmosphere and their subsequent synthesis to form perchloric acid (HClO4) in the atmosphere, and the surface deposition and subsequent mineralization of HClO4 in the regolith to form surface perchlorates. To evaluate the viability of this mechanism, we employ a one‐dimensional chemical model, examining chlorine chemistry in the context of Martian atmospheric chemistry. Considering the chlorine oxide, OClO, we find that an OClO flux as low as 3.2 × 107 molecules cm–2 s–1 sublimated into the atmosphere from the surface could produce sufficient HClO4 to explain the perchlorate concentration on Mars, assuming an accumulation depth of 30 cm and integrated over the Amazonian period. Radiolysis provides an efficient pathway for the oxidation of chlorine, bypassing the efficient Cl/HCl recycling mechanism that characterizes HClO4 formation mechanisms proposed for the Earth but not Mars.Key PointsMechanism initiated by radiolysis in the surface can potentially account for observed Martian perchlorate concentrationsInjection of oxides of chlorine from the surface into the atmosphere is potentially an effective way of forming perchloric acidMartian perchlorate is an important oxidant but poorly characterizedPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134196/1/jgre20553.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134196/2/jgre20553_am.pd
    corecore